8 research outputs found

    Svandiela @ HaSpeeDe: Detecting Hate Speech in Italian Twitter Data with BERT

    Get PDF
    This paper explains the system developed for the Hate Speech Detection (HaSpeeDe) shared task within the 7th evaluation campaign EVALITA 2020 (Basile et al. 2020). The task solution proposed in this work is based on a fine-tuned BERT model. In cross-corpus evaluation, our model reached an F1 score of 77,56% on the tweets test set, and 60,31% on the news headlines test set.Questo articolo spiega il sistema sviluppato per il tesk finalizzato all’individuazione dei discorsi d’odio all’interno della campagna di valutazione EVALITA 2020 (Basile et al. 2020). La soluzione proposta per il task è basata su un raffinemento di un modello BERT. Nella valutazione finale il nostro modello raggiunge un valore F1 di 77,56% sul dataset di tweets e di 60,31% sul dataset di titoli di giornale

    Combining isotopic signatures of n(87Sr)/n(86Sr) and light stable elements (C, N, O, S) with multi-elemental profiling for the authentication of provenance of European cereal samples

    Get PDF
    The aim of this work (from the FP6 project TRACE) was to develop methods based on the use of geochemical markers for the authentication of the geographical origin of cereal samples in Europe (cf. EC regulations 2081/92 and 1898/06). For the first time, the potential usefulness of combining n(87Sr)/n(86Sr) and δ13C, δ15N, δ18O and δ34S isotopic signatures, alone or with key element concentrations ([Na], [K], [Ca], [Cu] and [Rb], progressively identified out of 31 sets of results), was investigated through multiple step multivariate statistics for more than 500 cereal samples collected over 2 years from 17 sampling sites across Europe representing an extensive range of geographical and environmental characteristics. From the classification categories compared (north/south; proximity to the Atlantic Ocean/to the Mediterranean Sea/to else; bed rock geologies) the first two were the most efficient (particularly with the ten variables selected together). In some instances element concentrations made a greater impact than the isotopic tracers. Validation of models included external prediction tests on 20% of the data randomly selected and, rarely done, a study on the robustness of these multivariate data treatments to uncertainties on measurement results. With the models tested it was possible to individualise 15 of the sampling sites

    EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020

    Get PDF
    Welcome to EVALITA 2020! EVALITA is the evaluation campaign of Natural Language Processing and Speech Tools for Italian. EVALITA is an initiative of the Italian Association for Computational Linguistics (AILC, http://www.ai-lc.it) and it is endorsed by the Italian Association for Artificial Intelligence (AIxIA, http://www.aixia.it) and the Italian Association for Speech Sciences (AISV, http://www.aisv.it)

    Femtosecond X-ray protein nanocrystallography

    No full text
    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded1, 2, 3. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source4. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes5. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (~200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes6. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage

    Femtosecond X-ray protein nanocrystallography

    No full text
    corecore